By Topic

Eigenfilter Approach to the Design of One-Dimensional and Multidimensional Two-Channel Linear-Phase FIR Perfect Reconstruction Filter Banks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Patil, B.D. ; Dept. of Electr. Eng., Indian Inst. of Technol. Bombay, Mumbai ; Patwardhan, P.G. ; Gadre, V.M.

We present an eigenfilter-based approach for the design of two-channel linear-phase FIR perfect-reconstruction (PR) filter banks. This approach can be used to design 1-D two-channel filter banks, as well as multidimensional nonseparable two-channel filter banks. Our method consists of first designing the low-pass analysis filter. Given the low-pass analysis filter, the PR conditions can be expressed as a set of linear constraints on the complementary-synthesis low-pass filter. We design the complementary-synthesis filter by using the eigenfilter design method with linear constraints. We show that, by an appropriate choice of the length of the filters, we can ensure the existence of a solution to the constrained eigenfilter design problem for the complementary-synthesis filter. Thus, our approach gives an eigenfilter-based method of designing the complementary filter, given a ldquopredesignedrdquo analysis filter, with the filter lengths satisfying certain conditions. We present several design examples to demonstrate the effectiveness of the method.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:55 ,  Issue: 11 )