By Topic

Novel Hybrid Learning Algorithms for Tuning ANFIS Parameters as an Identifier Using Fuzzy PSO

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Teshnehlab, M. ; Toosi Univ. of Tech, Tehran ; Shoorehdeli, M.A. ; Sedigh, A.K.

This paper introduces a new hybrid approach for training the adaptive network based fuzzy inference system (ANFIS) and a new type of particle swarm optimizers (PSO). The previous works emphasized on gradient base method or least square (LS) based method. This study applied one of the swarm intelligent branches, PSO. The hybrid method composes fuzzy PSO with recursive least square (RLS) for training. We use PSO with some changes for training procedure parameters in antecedent part. These changes are inspired from fuzzy systems method and using fuzzy rules for tuning PSO parameters during training algorithms. The simulation results show that in comparison with current gradient based training, and authors previous hybrid method the proposed training have a good adaptation to complex plants and train less parameter than gradient base methods.

Published in:

Networking, Sensing and Control, 2008. ICNSC 2008. IEEE International Conference on

Date of Conference:

6-8 April 2008