Cart (Loading....) | Create Account
Close category search window
 

A New Methodology For RF MEMS Contact Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Peyrou, D. ; LAAS-CNRS, Toulouse Univ., Toulouse ; Coccetti, F. ; Pennec, F. ; Achkar, H.
more authors

Until nowadays, surface roughness effects were ignored in the analysis, due to the difficulty to generate a rough surface model and also to simplify the model in order to reduce calculation time. However, many engineering fields, such as MEMS, seek to improve the behaviour of the system at the surface level or the interface between surfaces. Thus, with the advance of numerical capabilities, the topography of the surface can be included in finite element simulations. This paper presents two methods for generating rough surfaces, one using the real shape with an original reverse engineering method and the other one by using a parametric design language to generate a normally distributed rough surface. As an application to demonstrate the power of these methods, we choose to predict by simulation the electrical contact resistance and the real contact area between rough surfaces as a function of the contact force. This application is a major concern in RF MEMS ohmic switches and shows an original approach to extract a guideline in choosing a design, materials and process flow to minimize the contact resistance. The agreement between the numerical model and an analytical model is very good and validates this novel numeric approach.

Published in:

Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, 2008. EuroSimE 2008. International Conference on

Date of Conference:

20-23 April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.