Cart (Loading....) | Create Account
Close category search window
 

Thickness dependence of electrical properties of PZT films deposited on metal substrates by laser-assisted aerosol deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Baba, S. ; Adv. Manuf. Res. Inst., Nat. Inst. of Adv. Ind. Sci. & Technol. (AIST), Tsukuba ; Tsuda, Hiroki ; Akedo, J.

Dependence of electrical properties-dielectric, ferroelectric, and piezoelectric properties-on film thickness was studied for lead-zirconate-titanate (PZT) thick films directly deposited onto stainless-steel (SUS) substrates in actuator devices by using a carbon dioxide (CO2), laser-assisted aerosol deposition technique. Optical spectroscopic analysis data and laser irradiation experiments revealed that absorption at a given wavelength by the film increased with increasing film thickness. Dielectric constant epsiv, remanent polarization value Pr, and coercive field strength Ec of PZT films directly deposited onto a SUS-based piezoelectric actuator substrate annealed by CO2 laser irradiation at 850degC improved with increasing film thickness, and for films thicker than 25 mum, e > 800, Pr > 40 muC/cm2, and Ec < 45 kV/cm. In contrast, the displacement of the SUS-based actuator with the laser-annealed PZT thick film decreased with increasing film thickness.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:55 ,  Issue: 5 )

Date of Publication:

May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.