By Topic

Adaptive Neural Sliding Mode Control of Nonholonomic Wheeled Mobile Robots With Model Uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bong Seok Park ; Dept. of Electr. & Electron. Eng., Yonsei Univ., Seoul ; Sung Jin Yoo ; Jin Bae Park ; Yoon Ho Choi

This brief proposes an adaptive neural sliding mode control method for trajectory tracking of nonholonomic wheeled mobile robots with model uncertainties and external disturbances. The dynamic model with model uncertainties and the kinematic model represented by polar coordinates are considered to design a robust control system. Self recurrent wavelet neural networks (SRWNNs) are used for approximating arbitrary model uncertainties and external disturbances in dynamics of the mobile robot. From the Lyapunov stability theory, we derive online tuning algorithms for all weights of SRWNNs and prove that all signals of a closed-loop system are uniformly ultimately bounded. Finally, we perform computer simulations to demonstrate the robustness and performance of the proposed control system.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:17 ,  Issue: 1 )