By Topic

Spatial correlation and capacity measurements for wideband MIMO channels in indoor office environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper describes a broadband multiple input, multiple output (MIMO) channel characterization platform and capacity measurement results in indoor office environment. The MIMO testbed has been designed for broadband MIMO channel sounding, capacity measurements and for characterizing the directional-multipaths of the radio propagation channel. The MIMO channel data have been collected in 5 GHz band inside a modern office environment. Capacity results from these experiments are discussed for different propagation conditions, including non line-of-sight (NLOS) and LOS propagations with various spacings between array elements. Spatial correlations are analyzed from the measured data and a frequency selective MIMO channel model based on the correlation statistics is validated. Post-processing of the measured data with a sequential ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm is utilized to extract the directions of departures and arrivals of multipath components at the transmitting and receiving arrays, respectively. A method of obtaining broadband MIMO capacity, indirectly, from a single directional measurement of MIMO propagation channel is also proposed and verified from the measurement results.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 5 )