By Topic

Blind decentralized estimation for bandwidth constrained wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aysal, T.C. ; Dept. of Electr. & Comput. Eng., Univ. of Delaware, Newark, DE ; Barner, K.E.

Recently proposed decentralized, distributed estimation and power scheduling methods for wireless sensor networks (WSNs) do not consider errors occurring during the transmission of binary observations from the sensors to fusion center. In this letter, we extend the decentralized estimation model to the case in which imperfect transmission channels are considered. The proposed estimators, which operate on additive channel noise corrupted versions of quantized noisy sensor observations, are approached from a maximum likelihood (ML) perspective. Complicating this approach is the fact that the noise distribution is rarely fully known to the fusion center. Here we assume the distribution is known but not the defining parameters, e.g., variance. The resulting incomplete data estimation problem is approached from a expectation-maximization (EM) perspective. The critical initialization and convergence aspects of the EM algorithm are investigated. Furthermore, the estimation of the source parameter is extended to the blind case where both the channel and sensor noise parameters are unknown. Finally, numerical experiments are provided to show the effectiveness of the proposed estimators.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 5 )