By Topic

On cooperation in energy efficient wireless networks: the role of altruistic nodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lifeng Lai ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ ; El Gamal, H.

In wireless networks with energy limited nodes, user cooperation is usually exploited to reduce the network energy consumption. In many practical scenarios, however, nodes' selfishness raises doubts on whether each node will be willing to spend its valuable energy in forwarding packets for other users. To analyze this problem, a non-cooperative game theoretic framework is adopted in our work. Using this framework, the critical role of altruistic nodes in encouraging cooperation is established, both for small and large scale networks. In a small network, where nodes utilize the Decode-Forward scheme to cooperate, we show that a relay node, with appropriate strategy and location, successfully turns the Nash Equilibrium from no- cooperation to full-cooperation. In the large scale network, we show that it is sufficient to have a vanishingly small fraction of the nodes to be altruistic, i.e., relay nodes, in order to ensure full cooperation from all the nodes in the network. This result hinges on using the appropriate forwarding policies by the altruistic nodes, as detailed in the sequel. Our work also establishes the sub-optimality of traditional relaying strategies, which ignore the game-theoretic aspect of the problem. An important aspect of our work is that only reward/punishment policies that can be realized on the physical layer are used, and hence, our results establish the achievability of full cooperation without requiring additional incentive mechanisms at the application layer.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 5 )