By Topic

Target Tracking by Particle Filtering in Binary Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Djurić, P.M. ; Dept. of Electr. & Comput. Eng., Stony Brook Univ., Stony Brook, NY ; Vemula, M. ; Bugallo, M.F.

We present particle filtering algorithms for tracking a single target using data from binary sensors. The sensors transmit signals that identify them to a central unit if the target is in their neighborhood; otherwise they do not transmit anything. The central unit uses a model for the target movement in the sensor field and estimates the target's trajectory, velocity, and power using the received data. We propose and implement the tracking by employing auxiliary particle filtering and cost-reference particle filtering. Unlike auxiliary particle filtering, cost-reference particle filtering does not rely on any probabilistic assumptions about the dynamic system. In the paper, we also extend the method to include estimation of constant parameters, and we derive the posterior Cramer-Rao bounds (PCRBs) for the states. We show the performances of the proposed methods by extensive computer simulations and compare them to the derived bounds.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 6 )