Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Multi-Task Learning for Analyzing and Sorting Large Databases of Sequential Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kai Ni ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC ; Paisley, J. ; Carin, L. ; Dunson, D.

A new hierarchical nonparametric Bayesian framework is proposed for the problem of multi-task learning (MTL) with sequential data. The models for multiple tasks, each characterized by sequential data, are learned jointly, and the intertask relationships are obtained simultaneously. This MTL setting is used to analyze and sort large databases composed of sequential data, such as music clips. Within each data set, we represent the sequential data with an infinite hidden Markov model (iHMM), avoiding the problem of model selection (selecting a number of states). Across the data sets, the multiple iHMMs are learned jointly in a MTL setting, employing a nested Dirichlet process (nDP). The nDP-iHMM MTL method allows simultaneous task-level and data-level clustering, with which the individual iHMMs are enhanced and the between-task similarities are learned. Therefore, in addition to improved learning of each of the models via appropriate data sharing, the learned sharing mechanisms are used to infer interdata relationships of interest for data search. Specifically, the MTL-learned task-level sharing mechanisms are used to define the affinity matrix in a graph-diffusion sorting framework. To speed up the MCMC inference for large databases, the nDP-iHMM is truncated to yield a nested Dirichlet-distribution based HMM representation, which accommodates fast variational Bayesian (VB) analysis for large-scale inference, and the effectiveness of the framework is demonstrated using a database composed of 2500 digital music pieces.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 8 )