By Topic

Alpha-Cut Implemented Fuzzy Clustering Algorithms and Switching Regressions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Miin-Shen Yang ; Dept. of Appl. Math., Chung Yuan Christian Univ., Chungli ; Kuo-Lung Wu ; June-Nan Hsieh ; Jian Yu

In the fuzzy c-means (FCM) clustering algorithm, almost none of the data points have a membership value of 1. Moreover, noise and outliers may cause difficulties in obtaining appropriate clustering results from the FCM algorithm. The embedding of FCM into switching regressions, called the fuzzy c-regressions (FCRs), still has the same drawbacks as FCM. In this paper, we propose the -cut implemented fuzzy clustering algorithms, referred to as , which allow the data points being able to completely belong to one cluster. The proposed algorithms can form a cluster core for each cluster, where data points inside a cluster core will have a membership value of 1 so that it can resolve the drawbacks of FCM. On the other hand, the fuzziness index plays different roles for FCM and . We find that the clustering results obtained by are more robust to noise and outliers than FCM when a larger is used. Moreover, the cluster cores generated by are workable for various data shape clusters, so that is very suitable for embedding into switching regressions. The embedding of into switching regressions is called . The proposed provides better results than FCR for environments with noise or outliers. Numerical examples show the robustness and the superiority of our proposed methods.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:38 ,  Issue: 3 )