By Topic

Low-Rank Matrix Fitting Based on Subspace Perturbation Analysis with Applications to Structure from Motion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hongjun Jia ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH ; Martinez, A.M.

The task of finding a low-rank (r) matrix that best fits an original data matrix of higher rank is a recurring problem in science and engineering. The problem becomes especially difficult when the original data matrix has some missing entries and contains an unknown additive noise term in the remaining elements. The former problem can be solved by concatenating a set of r-column matrices that share a common single r-dimensional solution space. Unfortunately, the number of possible submatrices is generally very large and, hence, the results obtained with one set of r-column matrices will generally be different from that captured by a different set. Ideally, we would like to find that solution that is least affected by noise. This requires that we determine which of the r-column matrices (i.e., which of the original feature points) are less influenced by the unknown noise term. This paper presents a criterion to successfully carry out such a selection. Our key result is to formally prove that the more distinct the r vectors of the r-column matrices are, the less they are swayed by noise. This key result is then combined with the use of a noise model to derive an upper bound for the effect that noise and occlusions have on each of the r-column matrices. It is shown how this criterion can be effectively used to recover the noise-free matrix of rank r. Finally, we derive the affine and projective structure-from-motion (SFM) algorithms using the proposed criterion. Extensive validation on synthetic and real data sets shows the superiority of the proposed approach over the state of the art.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 5 )