By Topic

Principal Component Analysis Based on L1-Norm Maximization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kwak, Nojun ; Div. of Electr. & Comput. Eng., Ajou Univ., Suwon

A method of principal component analysis (PCA) based on a new L1-norm optimization technique is proposed. Unlike conventional PCA which is based on L2-norm, the proposed method is robust to outliers because it utilizes L1-norm which is less sensitive to outliers. It is invariant to rotations as well. The proposed L1-norm optimization technique is intuitive, simple, and easy to implement. It is also proven to find a locally maximal solution. The proposed method is applied to several datasets and the performances are compared with those of other conventional methods.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 9 )