Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Consecutive tracking and segmentation using adaptive mean-shift and graph cut

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Junqiu Wang ; Inst. of Sci. & Ind. Res., Osaka Univ., Ibaraki ; Yagi, Y.

We present an effective tracking and segmentation algorithm in which tracking and segmentation are carried out consecutively. Object tracking in video sequences is difficult since the appearance of an object tends to change. An adaptive tracker that employs color and shape features is adopted to conquer this problem. The target is modeled based on discriminative features selected using foreground/background contrast analysis. Tracking provides overall motion of the target for the segmentation module. Based on the overall motion, we segment object out using the effective graph cut algorithm. Markov Random Fields, which are the foundation of the graph cut algorithm, provide poor prior for specific shape. It is necessary to embed shape priors into the graph cut algorithm to achieve reasonable segmentation results. The object shape obtained by segmentation is used as shape priors to improve segmentation in next frame. We have verified the proposed approach and got positive results on challenging video sequences.

Published in:

Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on

Date of Conference:

15-18 Dec. 2007