Cart (Loading....) | Create Account
Close category search window
 

The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

“Assist as needed” control algorithms promote activity of patients during robotic gait training. Implementing these requires a free walking mode of a device, as unassisted motions should not be hindered. The goal of this study was to assess the normality of walking in the free walking mode of the LOPES gait trainer, an 8 degrees-of-freedom lightweight impedance controlled exoskeleton. Kinematics, gait parameters and muscle activity of walking in a free walking mode in the device were compared with those of walking freely on a treadmill. Average values and variability of the spatio-temporal gait variables showed no or small (relative to cycle-to-cycle variability) changes and the kinematics showed a significant and relevant decrease in knee angle range only. Muscles involved in push off showed a small decrease, whereas muscles involved in acceleration and deceleration of the swing leg showed an increase of their activity. Timing of the activity was mainly unaffected. Most of the observed differences could be ascribed to the inertia of the exoskeleton. Overall, walking with the LOPES resembled free walking, although this required several adaptations in muscle activity. These adaptations are such that we expect that Assist as Needed training can be implemented in LOPES.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 4 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.