By Topic

Thermal Optimal Design for Plain Plate-Fin Heat Sinks by Using Neuro-Genetic Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jenn-Tsong Horng ; Dept. of Power Mech. Eng., Nat. Tsing Hua Univ., Hsinchu ; Shih-Fong Chang ; Tau-Yuan Wu ; Po-Li Chen
more authors

An effective artificial neural network together with a genetic algorithm have been demonstrated for predicting the optimal thermal performance of plain plate-fin heat sinks in a ducted flow under multi-constraints such as pressure drop, mass, and space limitations. A series of constrained optimal designs can be efficiently performed. Comparisons of the optimal results between the artificial neural network with genetic algorithm (ANN-GA) and the response surface methodology with sequential quadratic programming (RSM-SQP) methods are made. Although more training patterns are needed for the ANN-GA method as compared to that for the RSM-SQP method, the ANN-GA method which has randomly uniform-distributed training patterns in the whole solving domain can be applied to the global region of interest, not just in the region of operability. Consequently, a globally precise optimal solution can be achieved with the ANN-GA method; while the solution obtained with the RSM-SQP method may cause a significant error if the optimal values of the design variables happen to be located beyond the region of operability.

Published in:

IEEE Transactions on Components and Packaging Technologies  (Volume:31 ,  Issue: 2 )