By Topic

Sliding Mode Strategy for PEM Fuel Cells Stacks Breathing Control Using a Super-Twisting Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kunusch, C. ; Univ. Nac. de La Plata (UNLP), La Plata ; Puleston, P.F. ; Mayosky, M.A. ; Riera, J.

A second-order sliding mode strategy to control the breathing subsystem of a polymer electrolyte membrane fuel cell stack for transportation applications is presented. The controller is developed from a design model of the plant derived from open literature, and well suited for the design of second-order sliding mode strategies. Stability issues are solved using a super twisting algorithm. The resulting approach exhibits good dynamic characteristics, being robust to uncertainties and disturbances. Simulations results are provided, showing the feasibility of the approach.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:17 ,  Issue: 1 )