By Topic

Fuzzy Control System Performance Enhancement by Iterative Learning Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Radu-Emil Precup ; Dept. of Autom. & Appl. Inf., Politeh. Univ. of Timisoara, Timisoara ; Stefan Preitl ; JÓzsef K. Tar ; Marius L. Tomescu
more authors

This paper suggests low-cost fuzzy control solutions that ensure the improvement of control system (CS) performance indices by merging the benefits of fuzzy control and iterative learning control (ILC). The solutions are expressed in terms of three fuzzy CS (FCS) structures that employ ILC algorithms and a unified design method focused on Takagi-Sugeno proportional-integral fuzzy controllers (PI-FCs). The PI-FCs are dedicated to a class of servo systems with linear/linearized controlled plants characterized by second-order dynamics and integral type. The invariant set theorem by Krasovskii and LaSalle with quadratic Lyapunov function candidates is applied to guarantee the convergence of the ILC algorithms and enable proper setting of the PI-FC parameters. The linear PI controller parameters tuned by the extended symmetrical optimum method are mapped onto the PI-FC ones by the modal equivalence principle. Real-time experimental results for a dc-based servo speed CS are included.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:55 ,  Issue: 9 )