Cart (Loading....) | Create Account
Close category search window

Modified Elman neural network controller with improved particle swarm optimisation for linear synchronous motor drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lin, F.-J. ; Dept. of Electr. Eng., Nat. Central Univ., Chungli ; Teng, L.-T. ; Chu, H.

A modified Elman neural network controller is proposed to control the mover of a permanent magnet linear synchronous motor (PMLSM) servo drive to track periodic reference trajectories. First, the dynamic model of the PMLSM drive system is derived. Next, a modified Elman neural network is proposed to control the PMLSM. Moreover, the connective weights of the modified Elman neural network are trained online by back-propagation (BP) methodology. However, the learning rates of the online-training weights are usually selected by trial-and- error method, which is time-consuming. Therefore an improved particle swarm optimisation (IPSO) is adopted in this study to adapt the learning rates in the BP process of the modified Elman neural network to improve the learning capability. Finally, the control performance of the proposed modified Elman neural network controller with IPSO is verified by the simulated and experimental results.

Published in:

Electric Power Applications, IET  (Volume:2 ,  Issue: 3 )

Date of Publication:

May 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.