By Topic

License Plate Recognition From Still Images and Video Sequences: A Survey

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

License plate recognition (LPR) algorithms in images or videos are generally composed of the following three processing steps: 1) extraction of a license plate region; 2) segmentation of the plate characters; and 3) recognition of each character. This task is quite challenging due to the diversity of plate formats and the nonuniform outdoor illumination conditions during image acquisition. Therefore, most approaches work only under restricted conditions such as fixed illumination, limited vehicle speed, designated routes, and stationary backgrounds. Numerous techniques have been developed for LPR in still images or video sequences, and the purpose of this paper is to categorize and assess them. Issues such as processing time, computational power, and recognition rate are also addressed, when available. Finally, this paper offers to researchers a link to a public image database to define a common reference point for LPR algorithmic assessment.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:9 ,  Issue: 3 )