By Topic

Discriminative learning for optimizing detection performance in spoken language recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Donglai Zhu ; Inst. for Infocomm Res., Singapore ; Haizhou Li ; Bin Ma ; Chin-Hui Lee

We propose novel approaches for optimizing the detection performance in spoken language recognition. Two objective functions are designed to directly relate model parameters to two performance metrics of interest, the detection cost function and the area under the detection-error-tradeoff curve, respectively. Both metrics are approximated with differentiable functions of model parameters by using a smoothing function based on a class misclassification measure. The model parameters are optimized by using the generalized probabilistic descent algorithm. We conduct experiments on the NIST 2003 and 2005 Language Recognition Evaluation corpora. Results show that the proposed approaches effectively improve the performance over the maximum likelihood training approach.

Published in:

Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on

Date of Conference:

March 31 2008-April 4 2008