By Topic

Weighted maximum likelihood autoregressive and moving average spectrum modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Badeau, R. ; Dept. of TSI, Telecom Paris, Paris ; David, B.

We propose new algorithms for estimating autoregressive (AR), moving average (MA), and ARM A models in the spectral domain. These algorithms are derived from a maximum likelihood approach, where spectral weights are introduced in order to selectively enhance the accuracy on a predefined set of frequencies, while ignoring the other ones. This is of particular interest for modeling the spectral envelope of harmonic signals, whose spectrum only contains a discrete set of relevant coefficients. In the context of speech processing, our simulation results show that the proposed method provides a more accurate ARMA modeling of nasal vowels than the Durbin method.

Published in:

Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on

Date of Conference:

March 31 2008-April 4 2008