Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Why does PHAT work well in lownoise, reverberative environments?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cha Zhang ; One Microsoft Way, Microsoft Res., Redmond, WA ; Florencio, D. ; Zhengyou Zhang

Among many existing time difference of arrival (TDOA) based sound source localization (SSL) algorithms, the phase transform (PHAT) is extremely popular for its excellent performance in low noise environments, even under relatively heavy reverberation. However, PHAT was developed as a heuristic approach and its working principle has not been completely understood. In this paper, we present the relationship between PHAT and a maximum likelihood (ML) framework for multi-microphone sound source localization. We show that when the environment noise approaches zero, PHAT is indeed a special case of the ML algorithm, which explains its good performance under low noise environments. In addition, we show that as long as the noise stays low, PHAT remains optimal in ML sense even when the room reverberation is heavy, which explains its robustness over reverberation.

Published in:

Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on

Date of Conference:

March 31 2008-April 4 2008