By Topic

Efficient channel quantization scheme for multi-user MIMO broadcast channels with RBD precoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bin Song ; Commun. Res. Lab., Ilmenau Univ. of Technol., Ilmenau ; Roemer, F. ; Haardt, M.

Regularized block diagonalization (RBD) is a new linear precoding technique for the multi-antenna broadcast channel and has a significantly improved sum rate and diversity order compared to all previously proposed linear precoding techniques. We consider a limited feedback system with RBD precoding, in which each receiver has perfect channel state information (CSI) and quantizes its channel. The transmitter receives the quantized CSI with a finite number of feedback bits from each receiver. In contrast to zero-forcing (ZF) or block diagonalization (BD) precoding, where the transmitter only requires the channel direction information which refers to the knowledge of subspaces spanned by the users' channel matrices, for RBD precoding the transmitter additionally requires the channel magnitude information which defines the strength of the eigenmodes of the users' channel matrices. The key contribution of our work is that we propose a new scheme for the channel quantization to supply the transmitter with both channel direction and magnitude information. Based on this new scheme, firstly, we investigate a random vector quantization (RVQ). We derive a bound for the throughput loss due to imperfect CSI and find a way to achieve the bound by linearly increasing the number of feedback bits with the system SNR. Secondly, we modify the LBG vector quantization algorithm to obtain a dominant eigenvector based LBG (DE- LBG) vector quantization which can significantly reduce the number of feedback bits compared to RVQ. Finally, we demonstrate that the DE-LBG vector quantization can be applied to an OFDM-based multi-user MIMO system.

Published in:

Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on

Date of Conference:

March 31 2008-April 4 2008