By Topic

Learning optimal visual features from Web sampling in online image retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tollari, S. ; Univ. Pierre et Marie, Paris ; Glotin, H.

Linear discriminant analysis (LDA) to improve a Web images retrieval system. Our work takes place in the official European ImagEVAL 2006 campaign evaluation. The task consists to retrieve Web images using both textual (Web pages) and visual information. Our visual features integrate subband entropy profile, usual mean and color standard deviation. A simple weighted norm fusion is done with standard tf-idf Web page text analysis. Our model is the second best model of the ImagEVAL task2. We show how, sampling online image sets from the Web, one can estimate by approximated Fisher criterion an optimal visual feature subsets for some query concepts and then enhance their mean average precision by 50%. We discuss on the fact that some concept may not so nicely be enhanced, but that in average, this optimization reduces by 10 the visual dimension, without any MAP degradation, yielding to a significant CPU cost reduction.

Published in:

Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on

Date of Conference:

March 31 2008-April 4 2008