By Topic

An Analysis of a Near-End Crosstalk Cancelation System That Uses Adaptive Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rajeev Nongpiur ; Dept. of Electr. & Comput. Eng., Univ. of Victoria, Victoria, BC ; Dale J. Shpak ; Andreas Antoniou

An analysis of a near-end crosstalk (NEXT) cancelation system that uses adaptive digital filters is described. The analysis is based on two well-known models for the NEXT coupling factor, the Bradley and Lin models, and yields the minimum number of adaptive filters required to reduce the NEXT below a prescribed level to within a defined confidence factor. With the minimum number of adaptive filters known, the required computational resources for the application at hand can be estimated. The analysis is further extended to practical situations where the largest NEXT signals chosen for elimination are incorrectly detected, and estimates of the minimum and maximum increase in the uncanceled NEXT due to incorrect detection are then deduced. Simulations show that the estimated minimum number of adaptive filters required and the maximum and minimum increase in uncanceled NEXT due to incorrect detection are fairly close to corresponding estimates obtained on the basis of measurements for both the Bradley and the Lin models. Therefore, by using the proposed analysis the minimum number of adaptive filters can be deduced without the need for time-consuming and expensive experiments.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:55 ,  Issue: 10 )