By Topic

Microstructural and Magnetic Characterization of {\hbox {CuNb}}/{\hbox {Nb}}_{3}{\hbox {Sn}} Wires With Different Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

In this work we focus on the microstructural and magnetic characterization of wires with different architectures (design and reinforcement). The microstructural characterization was performed using scanning electron microscopy. AC magnetic susceptibility was measured with field applied both parallel and perpendicular to the wire axis. The heat treatment performed to form the A-15 superconducting phase leads to partial spheroidization followed by coarsening of the Nb filaments in the reinforcement material. The differences concerning the microstructure of the reinforcement material among the investigated wires were reflected in the broadening of the superconducting transition of Nb, more evident for a field applied parallel to the wire axis. From the magnetic data the wires were also compared in terms of the superconducting volume fraction.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:18 ,  Issue: 2 )