By Topic

Simplified Macromodel of MTLs With Incident Fields (SiMMIF)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shinh, G.S. ; Nvidia Corp., Santa Clara, CA ; Achar, R. ; Nakhla, N.M. ; Nakhla, M.S.
more authors

Electromagnetic compatibility (EMC) analysis of high-speed designs has become imperative due to rapidly increasing radio-frequency interference and emerging technological trends such as higher operating frequencies, denser layouts, and multifunction convergent products. In this paper, a simplified macromodel of multiconductor transmission lines (MTLs) exposed to incident fields is presented. The proposed formulation can also handle frequency dependence of resistance, capacitance, conductance, and inductance (RLGC) line parameters. The method employs the recently developed delay-extraction-based compact and passive MTL macromodel, while developing closed-form expressions for incident field analysis. An error bound for the proposed macromodel is also presented. The macromodel is simulation program with integrated circuit emphasis (SPICE) compatible and overcomes the mixed frequency/time simulation difficulties usually encountered during transient analysis, while guaranteeing the stability of the global transient simulation. The algorithm provides higher accuracy as well as significant speed gains for EMC analysis of transmission line networks as compared to the existing techniques.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:50 ,  Issue: 2 )