By Topic

Fault detection in dynamic systems via decision fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Due to the growing demands for system reliability and availability of large amounts of data, efficient fault detection techniques for dynamic systems are desired. In this paper, we consider fault detection in dynamic systems monitored by multiple sensors. Normal and faulty behaviors can be modeled as two hypotheses. Due to communication constraints, it is assumed that sensors can only send binary data to the fusion center. Under the assumption of independent and identically distributed (1ID) observations, we propose a distributed fault detection algorithm, including local detector design and decision fusion rule design, based on state estimation via particle filtering. Illustrative examples are presented to demonstrate the effectiveness of our approach.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:44 ,  Issue: 1 )