Cart (Loading....) | Create Account
Close category search window
 

Multiple-model probability hypothesis density filter for tracking maneuvering targets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Punithakumar, K. ; McMaster Univ., Hamilton ; Kirubarajan, T. ; Sinha, A.

Tracking multiple targets with uncertain target dynamics is a difficult problem, especially with nonlinear state and/or measurement equations. With multiple targets, representing the full posterior distribution over target states is not practical. The problem becomes even more complicated when the number of targets varies, in which case the dimensionality of the state space itself becomes a discrete random variable. The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment (the PHD) of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems with a varying number of targets. The integral of PHD in any region of the state space gives the expected number of targets in that region. With maneuvering targets, detecting and tracking the changes in the target motion model also become important. The target dynamic model uncertainty can be resolved by assuming multiple models for possible motion modes and then combining the mode-dependent estimates in a manner similar to the one used in the interacting multiple model (IMM) estimator. This paper propose a multiple-model implementation of the PHD filter, which approximates the PHD by a set of weighted random samples propagated over time using sequential Monte Carlo (SMC) methods. The resulting filter can handle nonlinear, non-Gaussian dynamics with uncertain model parameters in multisensor-multitarget tracking scenarios. Simulation results are presented to show the effectiveness of the proposed filter over single-model PHD filters.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:44 ,  Issue: 1 )

Date of Publication:

January 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.