Cart (Loading....) | Create Account
Close category search window

A CMOS Integrable Oscillator-Based Front End for High-Dynamic-Range Resistive Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
De Marcellis, A. ; Dept. of Electr. & Inf. Eng., Univ. of L''Aquila, L''Aquila ; Depari, A. ; Ferri, G. ; Flammini, A.
more authors

A new oscillating circuit is proposed to estimate the resistance and parallel parasitic capacitance of resistive chemical sensors. The circuit is able to reveal the resistance in a wide range (from tens of kiloohms to more than 100 GOmega) due to the adopted resistance-to-time technique. In addition, the parallel capacitance (up to 50 pF) can be estimated. The circuit, which does not need any initial calibration, is very simple and compact and is suitable to be integrated with a standard CMOS technology to obtain a low-cost and low-power device for a sensor array interface. Different kinds of post layout simulations concerning the CMOS integrated implementation have been conducted. Experimental results obtained using a discrete prototype board, both on passive components and on real sensors (metal-oxide sensors), have shown good linearity and reduced percentage error with respect to the theoretical expectations.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:57 ,  Issue: 8 )

Date of Publication:

Aug. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.