By Topic

Efficient Processing of Top-k Queries in Uncertain Databases with x-Relations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ke Yi ; Hongkong Univ. of Sci. & Technol., Kowloon ; Feifei Li ; Kollios, G. ; Srivastava, D.

This work introduces novel polynomial algorithms for processing top-k queries in uncertain databases under the generally adopted model of x-relations. An x-relation consists of a number of x-tuples, and each x-tuple randomly instantiates into one tuple from one or more alternatives. Our results significantly improve the best known algorithms for top-k query processing in uncertain databases, in terms of both runtime and memory usage. In the single-alternative case, the new algorithms are 2 to 3 orders of magnitude faster than the previous algorithms. In the multialternative case, we introduce the first-known polynomial algorithms, while the current best algorithms have exponential complexity in both time and space. Our algorithms run in near linear or low polynomial time and cover both types of top-k queries in uncertain databases. We provide both the theoretical analysis and an extensive experimental evaluation to demonstrate the superiority of the new approaches over existing solutions.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 12 )