Cart (Loading....) | Create Account
Close category search window
 

Quantitative Inference by Qualitative Semantic Knowledge Mining with Bayesian Model Averaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rui Chang ; Inst. of Inf., Tech. Univ. of Munich, Garching ; Stetter, M. ; Brauer, W.

In this paper, we consider the problem of performing quantitative Bayesian inference and model averaging based on a set of qualitative statements about relationships. Statements are transformed into parameter constraints which are imposed onto a set of Bayesian networks. Recurrent relationship structures are resolved by unfolding in time to Dynamic Bayesian networks. The approach enables probabilistic inference by model averaging, i.e. it allows to predict probabilistic quantities from a set of qualitative constraints without probability assignment on the model parameters. Model averaging is performed by Monte Carlo integration techniques. The method is applied to a problem in a molecular medical context: We show how the rate of breast cancer metastasis formation can be predicted based solely on a set of qualitative biological statements about the involvement of proteins in metastatic processes.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 12 )

Date of Publication:

Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.