By Topic

Agglomerative Fuzzy K-Means Clustering Algorithm with Selection of Number of Clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Li, M.J. ; Hong Kong Baptist Univ, Hong Kong ; Ng, M.K. ; Yiu-ming Cheung ; Huang, J.Z.

In this paper, we present an agglomerative fuzzy K-means clustering algorithm for numerical data, an extension to the standard fuzzy K-means algorithm by introducing a penalty term to the objective function to make the clustering process not sensitive to the initial cluster centers. The new algorithm can produce more consistent clustering results from different sets of initial clusters centers. Combined with cluster validation techniques, the new algorithm can determine the number of clusters in a data set, which is a well known problem in $k$-means clustering. Experimental results on synthetic data sets (2 to 5 dimensions, 500 to 5000 objects and 3 to 7 clusters), the BIRCH two-dimensional data set of 20000 objects and 100 clusters, and the WINE data set of 178 objects, 17 dimensions and 3 clusters from UCI, have demonstrated the effectiveness of the new algorithm in producing consistent clustering results and determining the correct number of clusters in different data sets, some with overlapping inherent clusters.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:20 ,  Issue: 11 )