By Topic

Comparing Statistical and Neural Network Methods Applied to Very High Resolution Satellite Images Showing Changes in Man-Made Structures at Rocky Flats

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chini, M. ; Ist. Naz. di Geofisica e Vulcanologia (INGV), Rome ; Pacifici, F. ; Emery, W.J. ; Pierdicca, N.
more authors

Parametric and nonparametric approaches to evaluate land-cover change detection using very high resolution (VHR) satellite imagery are applied to the analysis of the demolition of the Rocky Flats nuclear weapons facility located near Denver, CO. Both maximum-likelihood and neural network classifiers are used to validate a new parallel architecture which improves the accuracy when applied to VHR satellite imagery for the study of land-cover change between sequential satellite acquisitions. An enhancement of about 14% was found between the single-step classification and the new parallel architecture, confirming the advantage and the robust improvement obtained with this architecture regardless of the classification algorithm used. In this paper, we demonstrate and document the demolition and removal of hundreds of buildings taken down to bare soil between 2003 and 2005 at the Rocky Flats site.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 6 )