By Topic

Sparse shift-invariant NMF

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Potluru, V.K. ; Dept. of Comp Sci., Univ of New Mexico, Albuquerque, NM ; Plis, S.M. ; Calhoun, V.D.

Non-negative matrix factorization (NMF) has increasingly been used for efficiently decomposing multivariate data into a signal dictionary and corresponding activations. In this paper, we propose an algorithm called sparse shift-invariant NMF (ssiNMF) for learning possibly overcomplete shift- invariant features. This is done by incorporating a circulant property on the features and sparsity constraints on the activations. The circulant property allows us to capture shifts in the features and enables efficient computation by the Fast Fourier Transform. The ssiNMF algorithm turns out to be matrix-free for we need to store only a small number of features. We demonstrate this on a dataset generated from an overcomplete set of bars.

Published in:

Image Analysis and Interpretation, 2008. SSIAI 2008. IEEE Southwest Symposium on

Date of Conference:

24-26 March 2008