Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Independent Component Analysis for Vision-inspired Classification of Retinal Images with Age-related Macular Degeneration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Soliz, P. ; VisionQuest Biomed., Albuquerque, NM ; Russell, S.R. ; Abramoff, M.D. ; Murillo, S.
more authors

The purpose of this paper is to present a novel approach for extracting image-based features for classifying age-related macular degeneration (AMD) in digital retinal images. 100 retinal images were classified by an ophthalmologist into 12 categories based on the visual characteristics of the disease. Independent Component Analysis (ICA) was used to extract features at different spatial scales to be used as input to a classifier. The classification used a type of regression, partial least squares. In this experiment ICA replicated the ophthalmologist's visual classification by correctly assigning all 12 images from two of the classes.

Published in:

Image Analysis and Interpretation, 2008. SSIAI 2008. IEEE Southwest Symposium on

Date of Conference:

24-26 March 2008