By Topic

A Robust 3-D IVUS Transducer Tracking Using Single-Plane Cineangiography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

During an intravascular ultrasound (IVUS) intervention, a catheter with an ultrasound transducer is introduced in the body through a blood vessel, and then, pulled back to image a sequence of vessel cross sections. Unfortunately, there is no 3-D information about the position and orientation of these cross-section planes, which makes them less informative. To position the IVUS images in space, some researchers have proposed complex stereoscopic procedures relying on biplane angiography to get two X-ray image sequences of the IVUS transducer trajectory along the catheter. To simplify this procedure, we and others have elaborated algorithms to recover the transducer 3-D trajectory with only a single view X-ray image sequence. In this paper, we present an improved method that provides both automated 2-D and 3-D transducer tracking based on pullback speed as a priori information. The proposed algorithm is robust to erratic pullback speed and is more accurate than the previous single-plane 3-D tracking methods.

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:12 ,  Issue: 3 )