By Topic

A Real-Time Voltage Instability Identification Algorithm Based on Local Phasor Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Corsi, S. ; CESI Spa., Milan ; Taranto, G.N.

This paper proposes a new voltage instability risk indicator based on local phasor measurements at fast sampling rate. The effectiveness of the indicator is analyzed at EHV load and ldquotransitrdquo buses. The risk criterion is based on the real-time computation of the Thevenin equivalent impedance of the classic electrical circuit given by an equivalent generator connected to an equivalent load impedance through an equivalent connecting impedance. The main contribution of the paper is the innovating algorithm utilized on the real-time adaptive identification of the Thevenin voltage and impedance equivalents. The algorithm performance is shown through a detailed sensitivity analysis. The paper presents important numerical results from the actual Italian EHV network.

Published in:

Power Systems, IEEE Transactions on  (Volume:23 ,  Issue: 3 )