By Topic

Investigation of High-Accuracy Indoor 3-D Positioning Using UWB Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mahfouz, M.R. ; Biomed. Eng. Dept., Univ. of Tennessee, Knoxville, TN ; Cemin Zhang ; Merkl, B.C. ; Kuhn, M.J.
more authors

There are many challenges in building an ultra-wideband (UWB) indoor local positioning system for high-accuracy applications. These challenges include reduced accuracy due to multipath interference, sampling rate limitations, tag synchronization, and antenna phase-center variation. Each of these factors must be addressed to achieve millimeter or sub-millimeter accuracy. The developed system architecture is presented where a 300-ps Gaussian pulse modulates an 8-GHz carrier signal and is transmitted through an omni-directional UWB antenna. Receiver-side peak detection, a low-cost subsequential-sampling mixer utilizing a direct digital synthesizer, high fidelity 10-MHz crystals, and Vivaldi phase-center calibration are utilized to mitigate these challenging problems. Synchronized and unsynchronized experimental results validated with a sub-millimeter accurate optical tracking system are presented with a detailed discussion of various system errors.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:56 ,  Issue: 6 )