By Topic

Fault Detection and Diagnosis in a Set “Inverter–Induction Machine” Through Multidimensional Membership Function and Pattern Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Olivier Ondel ; Ecole Centrale de Lyon, Ecully ; Guy Clerc ; Emmanuel Boutleux ; Eric Blanco

Nowadays, electrical drives generally associate inverter and induction machine. Thus, these two elements must be taken into account in order to provide a relevant diagnosis of these electrical systems. In this context, the paper presents a diagnosis method based on a multidimensional function and pattern recognition (PR). Traditional formalism of the PR method has been extended with some improvements such as the automatic choice of the feature space dimension or a ldquononexclusiverdquo decision rule based on the k-nearest neighbors. Thus, we introduce a new membership function, which takes into account the number of nearest neighbors as well as the distance from these neighbors with the sample to be classified. This approach is illustrated on a 5.5 kW inverter-fed asynchronous motor, in order to detect supply and motor faults. In this application, diagnostic features are only extracted from electrical measurements. Experimental results prove the efficiency of our diagnosis method.

Published in:

IEEE Transactions on Energy Conversion  (Volume:24 ,  Issue: 2 )