By Topic

Near-Optimal Load Balancing in Dense Wireless Multi-Hop Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hyytia, E. ; Telecommun. Res. Center Vienna, Vienna ; Virtamo, J.

We consider the load balancing problem in wireless multi-hop networks. In the limit of a dense network, there is a strong separation between the macroscopic and microscopic scales, and the load balancing problem can be formulated as finding continuous curves ("routes") between all source-destination pairs that minimize the maximum of the so-called scalar packet flux ("traffic load"). In this paper we re-formulate the problem by focusing entirely on the so-called d-flows (vector flow field of packets with a common destination x) and by looking at the equation these flows have to satisfy. The general solution to this equation can be written in terms of a single unknown scalar function, psi(r, x), related to the circulation density of the d-flow, for which function the optimization task can be presented as a problem of variational calculus. In this approach, we avoid completely dealing with systems of paths and calculating the load distribution resulting from the use of a given set of paths. Once the optimal solution for psi(r, x) is found the corresponding paths are obtained as the flow lines of the d-flows. In the example of a unit disk with uniform traffic demands we are able to find a set of paths which is considerably better than any previously published results, yielding a low maximal scalar flux and an extraordinarily flat load distribution. We further illustrate the methodology for a unit square with comparable improvements achieved.

Published in:

Next Generation Internet Networks, 2008. NGI 2008

Date of Conference:

28-30 April 2008