By Topic

Statistical NLOS Identification Based on AOA, TOA, and Signal Strength

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kegen Yu ; Organ. Inf. & Commun. Technol. Centre, Commonwealth Sci. & Ind., Marsfield, NSW ; Guo, Y.J.

Nonline-of-sight (NLOS) propagation is one of the challenges in radio positioning. Significant attention has been drawn to the mitigation of the NLOS effect in recent years. This paper focuses on the identification of NLOS conditions by employing the statistical decision theory. A Neyman-Pearson (NP) test method is first derived for scenarios where either 1-D or 2-D angular measurements are provided. A time-of-arrival (TOA) based method is then developed under idealized conditions to provide a performance reference. In the presence of both TOA and received signal strength (RSS) measurements, a joint identification method is derived to efficiently exploit the TOA and RSS measurements. Analytical expressions of the probability of detection (POD) and the probability of false alarm (PFA) are derived for all the scenarios considered. Two theorems and one corollary regarding the line-of-sight (LOS) conditions based on the angle of arrival (AOA) are also presented, and the proofs are provided. Simulation results demonstrate that the proposed methods perform well, and the joint TOA- and RSS-based method considerably outperforms the TOA-based methods. The proposed methods are robust to the model errors, as demonstrated through simulations. It is also shown that the analytical results agree well with the simulated ones.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:58 ,  Issue: 1 )