By Topic

Performance Analysis of Multistage Interference Cancellation for Asynchronous TH-UWB Systems in Multipath Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Seungyoup Han ; Sch. of Electr. Eng., Yonsei Univ., Seoul ; Eunsung Oh ; Myeongsu Han ; Choongchae Woo
more authors

In this paper, we present an accurate analytical method for an asynchronous time-hopping (TH) ultrawideband (UWB) system using multistage interference cancellation (MIC) in multipath fading channels. To model the asynchronous transmission, we first investigate the chip-asynchronous case and extend the results of chip-asynchronous transmission into completely asynchronous transmission as a more general environment. Specifically, the approximate closed-form expression is derived for numerically calculating the average bit-error probability (BEP) of the MIC receivers, which are based on the hard-decision (HD) and soft-decision (SD) detections, respectively. In performing the analysis, the effect of multiple-access interference (MAI) is modeled as a Gaussian process. The results of an interference cancellation (IC) receiver as a function of the ratio between the two types of processing gain-1) pulse combining gain N s and 2) pulse spreading gain N c-are analyzed and compared under the constraint that the total processing gain of the system is large and fixed. To build up intuitive knowledge, some remarks on the analytic results are presented to describe the design criterion for the interference suppression. In numerical results, the theoretical analysis is verified via comparison with simulation results in terms of the number of IC stages, the set of cancellation parameters, and the number of users.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:58 ,  Issue: 3 )