By Topic

The influence of time-varying channels synchronized with commercial power supply on PLC equipments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Umehara, D. ; Grad. Sch. of Inf., Kyoto Univ., Kyoto ; Hayasaki, T. ; Denno, S. ; Morikura, M.

The regulation on power line communication (PLC) has been eased in Japan and the frequency band between 2 and 30 MHz can be exploited for in-home PLC. Several commercial PLC equipments are available in the market. Almost all PLC equipments take on a form of PLC adapters interconverting Ethernet signals and power line signals. We can construct in- home network by these PLC adapters easily because there are many power outlets in every room. However there are various factors destabilizing the communication among PLC adapters. These factors involve time-varying channel response and noise characteristics which are synchronized with commercial power supply. In particular, it has been seen that the noise on power line has significant variations rather than the channel response. Therefore, many PLC adapters are taking some measures to mitigate the time-varying noise on power line. On the other hand, we show a number of examples of more significant variations of the channel response synchronized with power supply due to some kinds of switching regulators. In this paper, we deal with such the time-varying channel response synchronized with commercial power supply. We show that the PLC adapters suffer from the time-varying channel response and analyze its influence on the PLC adapters.

Published in:

Power Line Communications and Its Applications, 2008. ISPLC 2008. IEEE International Symposium on

Date of Conference:

2-4 April 2008