By Topic

Designing a Fault-Tolerant Network Using Valiant Load-Balancing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rui Zhang-Shen ; Princeton Univ., Princeton ; McKeown, N.

Commercial backbone networks must continue to operate even when links and routers fail. Routing schemes such as OSPF, IS-IS, and MPLS reroute traffic, but they cannot guarantee that the resulting network will be congestion-free. As a result, backbone networks are grossly over-provisioned - sometimes running at a utilization below 10% so they can remain uncongested under failure. Yet even with such large over-provisioning, they still cannot guarantee to be uncongested, sometimes even with just a single failure. With our proposed approach, a network can be designed to tolerate an almost arbitrary number of failures, and guarantee no congestion, usually with an extremely small amount of over- provisioning. In a typical case, a 50 node network can continue to run congestion-free when any 5 links or routers fail, with only 10% over-provisioning. The key to the approach is Valiant Load-Balancing (VLB). VLB's path diversity allows it to tolerate k arbitrary failures in an N node network, with over-provisioning ratio of approximately k/N.

Published in:

INFOCOM 2008. The 27th Conference on Computer Communications. IEEE

Date of Conference:

13-18 April 2008