By Topic

Distributed Robust Optimization for Communication Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kai Yang ; Dept. of Electr. Eng., Columbia Univ., New York, NY ; Yihong Wu ; Jianwei Huang ; Xiaodong Wang
more authors

Robustness of optimization models for networking problems has been an under-explored area. Yet most existing algorithms for solving robust optimization problems are centralized, thus not suitable for many communication networking problems that demand distributed solutions. This paper represents the first step towards building a framework for designing distributed robust optimization algorithms. We first discuss several models for describing parameter uncertainty sets that can lead to decomposable problem structures. These models include general polyhedron, D-norm, and ellipsoid. We then apply these models to solve robust power control in wireless networks and robust rate control in wireline networks. In both applications, we propose distributed algorithms that converge to the optimal robust solution. Various tradeoffs among performance, robustness, and distributiveness are illustrated both analytically and through simulations.

Published in:

INFOCOM 2008. The 27th Conference on Computer Communications. IEEE

Date of Conference:

13-18 April 2008