By Topic

Optimization of Temporal Processes: A Model Predictive Control Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhe Song ; Dept. of Mech. & Ind. Eng., Univ. of Iowa, Iowa City, IA ; Kusiak, A.

A dynamic predictive-control model of a nonlinear and temporal process is considered. Evolutionary computation and data mining algorithms are integrated for solving the model. Data-mining algorithms learn dynamic equations from process data. Evolutionary algorithms are then applied to solve the optimization problem guided by the knowledge extracted by data-mining algorithms. Several properties of the optimization model are shown in detail, in particular, a selection of regressors, time delays, prediction and control horizons, and weights. The concepts proposed in this paper are illustrated with an industrial case study in combustion process.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:13 ,  Issue: 1 )