By Topic

Segmentation According to Natural Examples: Learning Static Segmentation from Motion Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ross, M.G. ; Dept. of Brain & Cognitive Sci., Massachusetts Inst. of Technol., Cambridge, MA ; Kaelbling, L.P.

The segmentation according to natural examples (SANE) algorithm learns to segment objects in static images from video training data. SANE uses background subtraction to find the segmentation of moving objects in videos. This provides object segmentation information for each video frame. The collection of frames and segmentations forms a training set that SANE uses to learn the image and shape properties of the observed motion boundaries. When presented with new static images, the trained model infers segmentations similar to the observed motion segmentations. SANE is a general method for learning environment-specific segmentation models. Because it can automatically generate training data from video, it can adapt to a new environment and new objects with relative ease, an advantage over untrained segmentation methods or those that require human-labeled training data. By using the local shape information in the training data, it outperforms a trained local boundary detector. Its performance is competitive with a trained top-down segmentation algorithm that uses global shape. The shape information it learns from one class of objects can assist the segmentation of other classes.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 4 )