Cart (Loading....) | Create Account
Close category search window
 

Experimental Method for Determining the Recovery of Superconducting Fault Current Limiter Using Coated Conductor in a Power System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Seong Eun Yang ; Dept. of Electr. & Electron. Eng., Yonsei Univ., Seoul ; Min Cheol Ahn ; Dong Keun Park ; Ki Sung Chang
more authors

Research on resistive superconducting fault current limiters (SFCLs) using coated conductor(CC) has now been advanced from development to commercialization stage. It is necessary to investigate the recovery characteristics of SFCL for effective application to power system. In Korea, if the SFCL is directly inserted to distribution power grid, it must be recovered in 0.5 s after fault. Since temperature sensor is not accurate in liquid nitrogen bathe and temperature of CC, after falling down below 92 K, is impossible to be measured by electrical method, it is difficult to measure the temperature of SFCL during the recovery of YBCO CC. In this paper, an experimental method was proposed to determine the recovery of resistive SFCLs. Under over-current for 0.1 s, maximum temperature of high temperature superconductor (HTS) wire increased to 300 K; after a few seconds, recovery time was measured by increasing DC current. With these experiments, thermal relaxation time required for the temperature of CC to decrease to 77 K was analyzed.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:18 ,  Issue: 2 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.